

VOLUME 20(4), 2021 519

Date of publication DEC-31, 2021, date of current version OCT-27, 2021.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.4.2439

Design-Space Exploration of

Application-specific Instruction-set

Processor Design

M. H. SARGOLZAEI
School of Electrical and Computer Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Corresponding author: M.H. Sargolzaei (e-mail: mh.sargolzaei@ece.usb.ac.ir).

 ABSTRACT Application-Specific Instruction-Set Processors (ASIPs) have established their processing power

in the embedded systems. Since energy efficiency is one of the most important challenges in this area, coarse-

grained reconfigurable arrays (CGRAs) have been used in many different domains. The exclusive program

execution model of the CGRAs is the key to their energy efficiency but it has some major costs. The context-

switching network (CSN) is responsible for handling this unique program execution model and is also one of the

most energy-hungry parts of the CGRAs. In this paper, we have proposed a new method to predict important

architectural parameters of the CSN of a CGRA, such as the size of the processing elements (PEs), the topology

of the CSN, and the number of configuration registers in each PE. The proposed method is based on the high-

level code of the input application, and it is used to prune the design space and increase the energy efficiency of

the CGRA. Based on our results, not only the size of the design space of the CSN of the CGRA is reduced to

10%, but also its performance and energy efficiency are increased by about 13% and 73%, respectively. The

predicted architecture by the proposed method is over 97% closer to the best architecture of the exhaustive

searching for the design space.

 KEYWORDS computer architecture; high-performance computing; energy efficient processor design; coarse-

grained reconfigurable array; application-specific instruction-set processor.

I. INTRODUCTION

he complexity of software applications grew

exponentially in the last decades. Based on the wide

range of those application domains, designing an energy-

efficient and high-performance general-purpose processor

is out of the question. In embedded systems, a lot of

different processing architectures have been presented to

increase both the processing and the energy efficiency of

processing platforms. Application-Specific Instruction-Set

Processors (ASIPs) are one of the most efficient processing

platforms that are used in many different application

domains, such as numerical and scientific computing,

digital signal processing, data security, artificial

intelligence, etc. [1-4].

In most application source codes of the embedded

systems, the biggest part of the execution time is due to

execute a small part of the code. ASIP processors, by

reducing the energy consumption and execution time of that

part, optimize the performance of their processing

platforms. Many different architectures were proposed to

improve the performance of the process-intensive part of

the application, such as custom instructions extraction [5],

using field-programmable gate arrays (FPGAs) or coarse-

grained reconfigurable arrays (CGRAs) as a coprocessor [1]

or using a graphics processing unit (GPU) to parallelize the

loops [1]. CGRAs established their power in both high-

performance and low-power domains [1, 6].

The efficiency of the ASIP processors is strongly related

to the extracted properties of the input applications that

have been extracted by application analysis strategies like

application profiling [7]. The extracted properties of the

T

 M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

520 VOLUME 20(4), 2021

input programs lead the ASIP processor to the best

architectural parameters. Usually, several parameters have

been indicated by those properties and some others not. In

those conditions, design-space exploring is the best strategy

to find the best ASIP processor architecture [8].

Not only the design-space exploration technique is a very

time-consuming process but also its execution time is

growing fast by the number of architectural parameters. In

the past, a huge number of researchers had presented

techniques to reduce the design-space exploration (DSE)

time by using application properties [9].

Many different pieces of research to optimize the DSE

algorithms of the ASIP processor were presented. Based on

the history of the FPGA- or GPU-based ASIP processors, in

this paper, we have focused on the CGRA-based ASIPs. In

this paper, we propose a graph-based modeling technique

(context-switching graph) to extract important properties of

the input application source code to reduce the DSE

searching time. By using the proposed model, the

exploration time needed to find the best CGRA

architectural parameters for the input group of applications

can be decreased.

Our main contributions in this paper are as follows:

- Our proposed model can describe the behavior of the

input application without profiling.

- Our proposed model can estimate several architectural

parameters of the CGRA without compilation nor

mapping the input high-level language program to the

CGRA context.

- Our proposed model can improve the efficiency of the

execution time and energy together with less DSE

searching time.

- Our proposed model can decrease the design-space

exploration time up to 80x.

The rest of the paper is organized as follows. In Section

II, a short description of the basic CGRA architecture is

given. An overview of the related work is reviewed in

Section III. In Section IV, our proposed graph model is

presented. Section V describes the proposed method to

reduce the design-space exploration time. The experimental

results are shown in Section VI. Finally, a conclusion of our

proposed method is presented in the last section.

II. PRELIMINARIES

CGRA is an ASIP processor based on the input

applications, many different parameters can be changed

along the CGRA design process. Since in this section, we

have presented both the CGRA architecture and the

properties of the chosen benchmarks.

A. CGRA ARCHITECTURE

A lot of different architectures were proposed for the

CGRAs in the last decades [6]. Based on the

reconfiguration phase of CGRAs, they can be categorized

into three different groups. In the first group CGRAs, the

CGRA has been configured at the beginning, and then the

CGRA goes to the execution phase, such as PACT XPP III

[6]. The second group of CGRAs refers to those that have

been reconfigured along with the execution phase. In these

CGRAs, the mode of the CGRA changes periodically

between execution and reconfiguration, such as REMUS

[6]. The last group of CGRAs is the hybrid ones who have

some statically configured parts and some dynamically

reconfigured processing units, such as ADRES [6].

Generally, the area cost of the first category is higher

than of the others, but its execution time is less. On the

other hand, the flexibility of the last category is much more

than the previous ones. Besides their reconfiguration

strategy, all CGRAs are constructed by four independent

networks that are working together: processing element

(PE) network, data-transferring network (DTN), context-

switching network (CSN), and controlling-network (CN),

as depicted in Figure 1.

Each CGRAs can work only in the reconfiguration mode

or on the execution mode. In the reconfiguration mode, the

PEs of the CGRA will be reconfigured to execute a

different job. To do that, the PEN, CSN, and CN should be

worked together. In the execution mode, input data will be

proceeded by moving along PEs. In another word, the

reconfiguration mode prepares the CGRA to execution of

the input algorithm on the input data.

Figure 1. A generic CGRA architecture

A CGRA has a big design space with an enormous

number of architectural parameters and considering all

those parameters to be optimized in a project is

unthinkable. Since the reconfiguration time and energy of a

CGRA is strongly related to its reconfiguration strategy [6],

we have selected only those who have been working in the

reconfiguration mode.

Table 1 shows some important architectural parameters

of a CGRA based on implemented ones [6]. The bold

options in Table 1 are the fixed parameters that they do not

add to the DSE process. But, lines with no bold option

present the important parameters that should be added to

the design space of the CGRA. Based on Table 1, the size

of the PEN, the topology of the CSN, and the number of

configuration registers in each PE will be considered in the

DSE process of the CGRA.

M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

VOLUME 20(4), 2021 521

Table 1. Design-space of a CGRA

 Parameters Options

PEN

Execution model Single-cycle / Multicycle / Pipelined
Instruction-Set RISC / CISC

Granularity Atomic / Clustered
Similarity Homogeneous / Heterogeneous

Topology
NoC / Mesh / Bus / Crossbar / Fully

connected / Hybrid
Size 4×4 / 5×5 / 6×6 / 8×8 / 4×N / …

DTN

Topology
Bus / NoC / Fully connected / Nearest

Neighbor
Granularity Central / Distributed

Latency
Single-cycle / Fixed multicycle /

Variable

CSN

Topology
Fully connected / Bus / Nearest

Neighbor
Reconfiguration

model
Static / Dynamic

Granularity
Reg in each PE / Cache in each

cluster / Central memory
Number of CRs 1, 2, 4, 8

CN
Topology Fully connected / Bus

Flow control Token passing

B. SELECTED BENCHMARKS

Since the efficiency of the CGRAs is strongly related to the

group of applications, we have selected 20 different

applications in four groups to test the efficiency of our

proposed methods in different situations. Table 2 shows the

main properties of the selected benchmarks. The columns

of Table 2 are the name of the benchmark suite, its domain

of application, the number of selected benchmarks from

that suite, the number of the different basic blocks (BBs),

the number of memory accesses (MAs) in the innermost

loop, and the number of different contexts needed to map

the 3AC format [10] of the applications of that group onto

the 4×4 CGRA architecture respectively.

Table 2. The selected benchmarks

Name Domain Apps BBs MAs Contexts
Livermore

Loops
Math.

7 23 33 34

Array Sorting Memory 5 29 18 31
Image

Processing
Matrix

3 9 27 21

BDTi Kernels DSP 5 13 18 22

 Sum: 74 98 108

The first group is the Livermore Loops benchmark suite

[11]. These applications have a small number of branches

and memory accesses, but they have a lot of computations.

The second group is a set of five well-known sorting

algorithms [12]. These applications do not have many

mathematical operations, but they have a lot of memory

accesses and conditional branches. The third group of

applications is three well-known image processing kernels

[13]. These applications not only have a lot of mathematical

operations but also have many memory accesses. The

fourth group of applications is selected from the BDTi

kernels [14]. They have a little of all (mathematical

operations, memory access, and branches).

III. RELATED WORKS

Based on the big design space of a CGRA, finding the most

fitting parameters to its input application is an NP-complete

problem. Hence, researchers focused only on one of the

CGRA networks. Previous researches on the efficiency of

the CGRA can be divided into two main groups: DSE

methods and optimizing only one particular component of

it.

The design-space exploration works generally are

proposed for a particular CGRA for finding the best

tradeoff. However, there are few papers ([15-17]) dealing

with research of a specific component of the CGRA, and

their results can be used for other CGRAs. In [15], authors

focused on the CN and they showed that the token-passing

protocol is the best flow control protocol for the CGRAs. In

[16], they searched the PEN design space to find the best

topology for the PEN. They applied different topologies to

the ADRES architecture. In [17], they proposed a new

ultra-low-power method for near-sensor CGRAs. They also

did run an exhaustive search on the size of the PEN to find

the best performance and energy of the CGRA. Since the

size of the PEN has a major impact on the performance and

the energy of the CGRA, finding the best size of the PEN

has always been an important concern in the design-space

exploration ([16, 18, 19]).

In the second group of research works, optimizing a

CGRA component is used as a solution to enhance the

energy efficiency and performance of the CGRAs. Some

researchers focused on the DTN of the CGRA ([20-22]). In

[20], they proposed a hierarchical memory architecture to

reduce the energy of the DTN. A reconfigurable DM

network is proposed in [21] to decrease the energy. In [22],

they used non-unified memory access (NUMA) architecture

for the DTN and they proposed a new mapping algorithm to

increase the performance of the CGRA by mapping the

memory accessing PEs near the data memory unit.

Optimizing the CSN is a popular way to improve the

efficiency of CGRAs. Chung and et al ([23]) coded the

most frequent patterns in the contexts with a small code and

stored it in a register inside the PE (configuration word). By

using that technique, they succeeded to reduce the number

of data transactions on the CSN. In [24, 25], the

configuration words were reordered to make groups of

similar configuration words and stored only one of them in

the context memory using an address translator to find the

reordered configuration words. In [2], the size of the

context memory was reduced by eliminating the duplicate

configuration words of the contexts. In [19, 26], they

proposed a dynamic decompression method to reduce the

number of configuration bits that are stored/transferred

to/from the context memory.

 M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

522 VOLUME 20(4), 2021

In [27], they proposed a new method to reduce the

energy of the context switching process by decreasing the

number of active lines of the context memory and also

reducing the number of transition bits on the CSN. In [28],

they used the differential loading technique to reduce the

number of transition bits on the CSN. But, Kim and

Mahapatra [29, 30] neither stored nor transmitted the

unnecessary bits of the configuration words to reduce the

energy of the CGRA.

In all aforementioned methods, the efficiency of the

CGRA was improved by affecting one or two architectural

parameters of the CGRA. In this paper, we propose a new

method to find a good tradeoff based on three major

effective parameters of the CGRA: the granularity of the

CSN, the size of the PEN, and the best number of the

configuration registers in each PE. The proposed method is

based on a graph model of the input application, called

context-switching graph.

IV. CONTEXT-SWITCHING GRAPH

The context-switching graph models the behavior of the

input application in the CS process based on the standard

three-address code (3AC) format of the input program [27].

We have described the context-switching graph based on

the control flow graph (CFG) of the program because

extracting the CFG is well known. Using the context-

switching graph is the key to predict the number of

different contexts of the input program based on the

context-switching graph of the input program without

compiling it.

Suppose a simple program (Figure 2.a) and its 3AC

format (Figure 2.b) which it has to be compiled and mapped

onto a CGRA. The CFG of the input program can be easily

drawn by mapping the basic blocks (BBs) to the nodes of

the graph and their relations to the edges. If each BB is

compiled into a single context, each edge of the graph

indicates the next BB which has to be fetched in the

context-switching process. In the context-switching graph,

each node contains four different sets information about the

BB: ID, pipelined or straight, number of instructions, and

number of the memory accesses. The ID field is the unique

number of the BB. If the BB contains a whole loop (like

BB2), it is supposed to be a pipelined BB and takes “Y” in

the “is pipelined?” field otherwise it takes “N”. Both

numbers of instructions and memory accesses are

calculated based on the 3AC format of the program. The

final context-switching graph is shown in Figure 2.c.

As it is shown in Figure 2.c, some nodes have more than

one output-edges. In many cases, the probability of using

one of those output-edges is higher than others, such as

loops, as they have been marked by a star in Figure 2.c. The

marked edges are predicting the next fetching context to the

CGRA. We have used the predicted next fetching context

as the successor context in the next section to optimize the

context-switching of the CGRA.

V. PRUNING THE DESIGN-SPACE

To prune the design space of the CGRA, its important

architectural parameters should be modeled by some high-

level factors that are extracted from the input application

program. Predicting the number of different contexts based

on the context-switching graph is the first step.

A. PREDICTING THE NUMBER OF DIFFERENT

CONTEXTS

The number of different contexts has a strong impact on the

number of context-switching processes, and consequently,

it has a great effect on both the energy and performance of

the CGRA. To the best of our knowledge, there is no

method to predict the number of contexts of an input

program without going through its compilation.

In the 3AC format of the input program, the BBs are

separated with branches, and each branch is equal to a

context switching process. So, the bottom limit of the

number of contexts of an input program is equal to the

number of its BBs. In addition to those, there are three main

reasons to break a BB into more than one context: a big

number of instructions, too many memory accesses, and

complex variable usages.

Figure 2. Input high-level program

We have predicted the number of different contexts (Ci)

of each basic block (BBi) based on the size of the PEN (S),

the number of the instructions (Ni), and memory accesses

(Mi) of that basic block. Finding the exact value of the Ci is

generally impossible because it is related to many other

parameters which are not in the scope of this paper; for

example, the ISA of the CGRA, the efficiency of the

compiler, the programming model, etc. However, we can

indicate the lower bound of the Ci based on Ni, S, and Mi as

it is shown in equations (1)-(3).

Each CGRA has S×S PEs in its PEN. Hence, if the

number of instructions of the input basic block (Ni) is more

for(i=0;i<100;i++)

 for(j=0;j<100;j++)

A[i][j] = B[i][j] + C[i][j];

i = 0;

L0: if(i == 100) exit();

j = 0;

t0 = i * 100;

L1: if(j == 100) goto

L2;

t0 = t0 + j;

t1 = B[t0];

t2 = C[t0];

t3 = t2 + t1;

A[t0] = t3;

j = j + 1;

goto L1;

L2: i = i + 1;

goto L0;

(a)

(c) (b)

P
N

#
M

#: ID of the BB
P: is pipelined? Y/N
N: number of instructions
M: number of memory accesses

N
1

0
0

N
5

1
0

exit
Y
9

2
3

BB0

BB1

BB2

BB1

M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

VOLUME 20(4), 2021 523

than the number of PEs, it will have to be fragmented into

multiple contexts. By fragmenting a BB into multiple

contexts, one branching instruction (per context) will be

added to the Ni. On the other hand, based on the efficiency

of the CGRA compiler, some PEs in the PEN cannot be

mapped and they will be idle [28]. Thus, we have added a

new parameter for that effect, called α. Equation (1)

calculates the number of different contexts for a BB based

on its number of instructions

C1i = ⌈
N + C1i

S × S × α
⌉. (1)

On the other hand, based on the topology of the DTN, if

the number of the memory accesses of a BB (Mi) is greater

than the size of the PE array (S), the basic block will be

broken into more than one context. Equation (2) calculates

the minimum number of the required contexts based on the

number of the memory accesses in the B:

C2i = ⌈
Mi

S
⌉.

(2)

The lower bound of the number of different contexts of

an input basic block (Ci) should be greater than or equal to

the maximum value of the C1i and C2i. Equation (3)

calculates the lower bound of the number of different

contexts for a given BB:

Ci = max{𝐶1𝑖, 𝐶2𝑖}. (3)

As mentioned before, there are three reasons to break a

BB into more than one context. We have modeled the first

two parameters, but the third one, the complex variable

usage, cannot be modeled by equations.

To validate the predicted Ci, we have compiled all

applications on all CGRA sizes in our design space and

found the smallest possible “Ci” manually. However,

between 20 chosen applications, only one application could

not be mapped to the calculated number of contexts by

Equation (3).

B. PREDICTING THE SIZE OF THE PEN

Not only, the number of PEs in the PEN has a strong impact

on the number of different contexts of the input program,

but also it has a great effect on almost all other architectural

parameters of the CGRA. Based on the previously

implemented CGRAs, as it is shown in Table 1, we have

considered all sizes in the range of 4×4-8×8 for the size of

the PEN in the design space (only square PENs).

To reduce the execution time and the energy of the

CGRA through optimizing its CSN, we have decreased the

number of fetching configuration words through the

context-switching processes. Equation (4) calculates the

number of the transferred configuration words (CW) based

on the predicted number of different contexts for the input

program:

𝐶𝑊 ≈ 𝑆 × 𝑆 × ∑ 𝐶𝑖

𝐵

𝑖=0
. (4)

By changing the size of the PEN, a new value for the

CW is calculated. By increasing S, the number of occurring

context-witching processes due to execute input program

and consequently the number of the transferring

configuration word will be decreased. Hence, the minimum

CW indicates the upper bound of the best size of the PEN.

By using Equation (4), we have pruned 74% of the CGRA

design-space on average.

C. PREDICTING THE NUMBER OF CRS IN EACH PE

The number of configuration registers (CRs) in each PE has

a strong effect on the number of the transferred

configuration words and consequently on the number of

accesses to the context memory. Having enough CRs in

each PE to store all configuration words of the program

innermost loop can reduce the number of context-switching

processes dramatically.

The number of different contexts of the innermost loop

depends on the PEN size (Equations (4)). Subsequently, the

number of different contexts of the innermost loop and the

number of CRs can be calculated by Equation (3). The

calculated value of the CRs is the upper bound of its best

value in the CGRA design space. Hence, the calculated

values for different benchmarks reduce the design space by

about 37.3% (on average).

D. PREDICTING THE TOPOLOGY OF THE CSN

As it is shown in Table 1, there are three major topologies

for the CSN of a CGRA: fully connected or Point-to-Point

(P2P), bus (B), and nearest neighbor (NN). In the P2P

topology, there is a dedicated channel between the context

memory and each PE, so the reconfiguration phase will be

completed in one clock cycle and it has the minimum

overhead on the execution time for the input program. In

the B topology, there is a shared bus for each row/column

of the PEN, consequently, the reconfiguration phase of the

B topology takes S clock cycles long. In the NN topology,

the configuration words will be shifted through the CRs of

the PEs in each row/column. Then, its reconfiguration

phased delay is S clock cycles, i.e., the same as the B

topology.

The topology of the CSN affects the energy of the

CGRA by two factors: the amount of the wiring capacities

and the number of the transition bits in those wires. The

amount of the wiring capacities can be modeled by the

number of required non-local links in the CSN. On the

other hand, the number of transition bits can be modeled by

the number of different CWs that will be shifted through

 M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

524 VOLUME 20(4), 2021

the CSN due to the context-switching phase. Hence, for

each reconfiguration process, the number of transition bits

in the P2P topology can be modeled by the number of

different CWs of each PE with its predecessor CW.

Equation (5.a) models the energy of the CSN for the P2P

topology:

𝑃2𝑃 ≈ ∑ 𝐷𝑖 × 𝐶𝑆×𝑆
𝑖=1 , (5.a)

where Di is the number of the different bits of two

following configuration words and C is the capacitance of

the P2P link between the context memory and the PE. On

the other hand, when the topology of the CSN is B or NN,

the configuration words should be sequentially shifted

through the bus or the PEs. Equation (5.b) models the

energy of the CSN for the B and the NN topologies:

𝐵𝑁𝑁 ≈ ∑ 𝑖 × 𝐷𝑖 × 𝐶𝑆×𝑆
𝑖=1 , (5.b)

where Di is the number of the different bits of two adjacent

PEs in a row/column. In the B topology, the CWs are

shifted via a link and C is the capacity of that link, but in

the NN topology, C is the capacity of the reconfiguration

part of each PE. Predicting the topology of the CSN reduces

the size of the design space by about 35% (on average).

E. PRUNING THE DESIGN-SPACE

As discussed before, the delay and the energy of the CGRA

are dependent on the architectural parameter of the CGRA.

We have predicted the upper/lower bound of those

parameters based on the input application programs in the

previous subsections. In this subsection, we will reduce the

size of the design space by using the pruning method based

on the predicted boundaries.

As shown in Table 1, some of the architectural

parameters of the CGRA are not fixed: the PEN size (from

4×4 to 8×8), the CSN topology (P2P, B, and NN), and the

number of the CRs in each PE (1 to 8). To do an exhaustive

search in the design space of the CSN, 120 (5×3×8)

different architectures should be simulated for each

application.

As discussed in the previous section, the predicted values

for the architectural parameters of the CGRA are the

upper/lower bounds to the best value. By applying those

boundaries to the design space, a big part of it will be

pruned. Figure 3 shows the effect of the pruning process on

the size of the design space.

Figure 3. Effect of pruning the size of the design space.

VI. EXPERIMENTAL RESULTS

In this paper, we have not only proposed a new method to

predict a near-best (or the best) value of multiple important

architectural parameters of the CGRA but also, we have

reduced the size of its design space by using the proposed

method. In this section, the effect of the proposed method

will be discussed in terms of delay and the energy of the

CGRA. Then, we will prune its design space to find the best

architecture for a given application without searching all

the design space. Finally, a comparison in terms of the

delay and the energy of the CGRA will be presented in

some future works.

In this section, we have used the smallest CGRA (PEN

size = 4, the number of CRs = 1, and the CSN topology= B)

as the basic CGRA (CGRA0) to compare the efficiency of

our proposed method.

A. DELAY ANALYSIS

The execution of an application can be divided into three

different phases: initial phase, reconfiguration phase, and

running phase. The contexts and data of the input

application should be transferred into the context and data

memory of the CGRA in the initial phase. Since the initial

phase is occurring only once, its run-time can be ignored.

The delay of the running phase is related to the number of

occupied PEs and their type (pipelined or not). Hence, it

can be considered independent of the CGRA architectural

parameters. On the other hand, the cost of the

reconfiguration phase is the main concern of this paper.

The delay of the reconfiguration phase is strongly related

to the predicted parameters. For each reconfiguration

process, the delay of the reconfiguration phase is 1 (for the

P2P CSN) or S (for the B and NN CSNs). The number of

the required reconfiguration processes is related to the

number of the different contexts, the number of loops in the

CSG, and the efficiency of the compiler. Hence, we have

modeled the delay of the reconfiguration phase by Equation

(7).

𝐷𝑒𝑙𝑎𝑦 ≈ 𝐷 × ∑ (𝐶𝑖 + ∑ 𝐿 × 𝐶𝑖 × 𝐶𝑗
𝐵
𝑗=0)𝐵

𝑖=0 , (7)

where D is the delay of each reconfiguration process, L is a

binary variable for indicating the loop BBs (1 for loops and

0 for other basic blocks). Figure 4 shows the delay

M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

VOLUME 20(4), 2021 525

reduction ratio of the predicted CGRA compared with the

CGRA0.

Figure 4. Delay and energy reduction ratio.

As it is shown in Figure 4, the delay in some cases with

the predicted architecture is the CGRA0, hence, there is no

delay reduction in those cases.

B. ENERGY ANALYSIS

As it is discussed in the previous subsection, there are three

different phases of a CGRA application execution process.

The energy of the initial and running phases can be ignored

as well as their delay. But, the energy of the reconfiguration

phase of the CGRA is considered in this paper.

The energy of the reconfiguration phase of the CGRA is

related to the size of the PEN (the number of PEs), the CSN

topology (the number of channels in the CSN), and the

number of CRs in each PE (the number of the needed

reconfiguration processes). Hence, the energy of the CGRA

can be modeled by Equation (8).

𝐸𝑛𝑒𝑟𝑔𝑦 ≈ 𝑆 × 𝑆 × 𝐸5/𝐶𝑅, (8)

where S is the size of the PEN, E5 is the output of Equation

5 (5.a for the P2P and 5.b for the B/NN topology), and CR

is the number of CRs in each PE. Based on the previously

calculated parameters (by equations (3) to (5)), the

minimum output of Equation (8) is the best architecture.

The effect of applying the predicted parameters on the

energy of the CGRA for each application is shown in

Figure 4.

Based on our results, the energy of the application

execution can be reduced by more than 58% (or on average

73%) compared with the CGRA0 architecture.

C. THE ERROR OF THE PREDICTED ARCHITECTURE

The goal of this paper is to design an efficient CSN for the

CGRA without exhaustive searching for its design space.

We have proposed a model to predict the important

parameters of the CSN and use them as an upper/lower

bound of those parameters to prune the design space. Using

a pruning algorithm to reduce the size of the design space

might result in losing the best architecture, but it can find

an acceptable one. Thus, the difference between the delay

and the energy of the predicted architecture and the best

one (who can be found by exhaustive search) should be

analyzed.

A semi-best predicted architecture might increase the

delay and the energy of the CGRA due to the application

execution based on our results, there are only two (out of

20) mismatches between the best architecture of the

exhaustive search and our predicted ones. However, the

delay and the energy of the predicted CGRA is about 99%

(on average, and 97% for the worse case) close to the best

CGRA results.

D. MORE OPTIMIZATION WITH THE CUC METHOD

We have proposed a configuration compression method to

reduce the energy of the CGRA through decrease in its

reconfiguration phase costs in our previous work [27]. To

gain more energy efficiency, we have applied the CUC

method to the context of the input applications and

examined its effect on our new proposed method. Figure 5

shows the effect of our proposed method on the energy and

the delay of the CGRA w/ and w/o applying the CUC.

Figure 5. Comparison of the results w/ and w/o using the

CUC.

As it is shown in Figure 5, using the CUC method along

with our proposed prediction method improves by 3% and

6% the delay and the energy of the CGRA respectively.

E. COMPARISON WITH PREVIOUS WORKS

We have examined the efficiency of our proposed method

in two terms individually in the previous subsection.

However, we will compare the energy efficiency, area

overhead, and performance improvement of our proposed

method with some previous works. Table 3 shows the area

overhead, the performance improvement, and the energy

efficiency of each method. The starred numbers in the last

column are for the energy efficiency of the CM module and

not for the whole CGRA. The first six selected works in

Table 3 are some context compression methods that are

only working on a particular architecture of a CGRA. The

next four chosen works are some design-space exploration

works whose method can be used on the other CGRA

architectures just like our proposed method. Finally, the last

two lines are the results of our proposed method for the

normal and the CUC version of the CGRA, respectively.

 M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

526 VOLUME 20(4), 2021

Table 3. Comparison of results with previous works.

 Area (%) Delay (%) Energy (%)

[29] 10.35 0 38.5*

[25] 2-3 0 36.85*

[27] 10.5 0 19.34 (81*)

[19] 6 -49.07 17.26

[2] 8 0 70*

[26] 9.7 0 50*

[30] 395.21 80 -

[17] - 18.6 22.3

[16] - 25 5-20

w/o CUC 1.77 13.15 73.07

w/ CUC 7.68 16.1 79.11

As shown in Table 3, our proposed method not only

improves the energy efficiency of the CGRA but also

shows a better performance. By using our proposed

method, the energy consumption and the delay of the

CGRA can be reduced about 73% and 13% respectively.

On the other hand, by using our design-space pruning

method, the design-space exploration time will be reduced

more than by 90%.

VI. CONCLUSIONS

In this paper, we proposed a new method to design an

energy- and delay-efficient CGRA without running an

exhaustive search for the best architectural parameters of

the CGRA. We modeled the 3AC format of the input

program by a graph, the context-switching graph (CSG).

We also predicted the different number of contexts of an

application, without performing any compilation or

application mapping. The best architecture of the context

switching network of the CGRA was predicted based on the

proposed CSG and the predicted number of contexts. Based

on our proposed method, the best architecture can be found

10× (on average) faster than the exhaustive search on

average, with more than 97% of its accuracy in energy

prediction. Based on our results, using a context

compression method can increase the efficiency of the

prediction method by up to 19%. Using the context

compression method improves the processing performance

and the energy efficiency of the CGRA by 13% and 73% on

average.

References

[1] R. Tessier, K. Pocek and A. DeHon, “Reconfigurable computing

architectures,” Proceedings of the IEEE, vol. 103, issue 3, pp. 332-

354, 2015. https://doi.org/10.1109/JPROC.2014.2386883.
[2] H. Lee, M. S. Moghaddam, D. Suh, and B. Egger, “Improving

energy efficiency of coarse-grain reconfigurable arrays through

modulo schedule compression/ decompression,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 15, issue 1, pp.

1-26, 2018. https://doi.org/10.1145/3162018.

[3] A. Palagin and V. Opanasenko, “The implementation of extended
arithmetic’s on FPGA-based structures,” Proceedings of the 9th

IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, vol. 2,

(IDAACS’2017), 21-23 September 2017, Bucharest, Romania, pp.

1014–1019. https://doi.org/10.1109/IDAACS.2017.8095239.

[4] V. Opanasenko, A. Palahin, and S. Zavyalov, “The FPGA-based
problem-oriented on-board processor,” Proceedings of the 10th IEEE

International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, vol. 1,
(IDAACS’2019), 18-21 September 2019, Metz, France, pp. 152–157.

https://doi.org/10.1109/IDAACS.2019.8924360.

[5] J. Choi, S. Kim and H. Han, “Accelerating loops for coarse grained
reconfigurable architectures using instruction extensions,” ACM

Symposium on Research in Applied Computation, New York, USA,

21-24 Mar., 2011, pp. 314-318.
https://doi.org/10.1145/2103380.2103445.

[6] H. K. Nguyen, T. V. Le-Van and X. T. Tran, “A survey on

reconfigurable system-on-chips,” REV Journal on Electronics and
Communications, vol. 7, pp. 3-4, 2018. https://doi.org/10.21553/rev-

jec.147.

[7] J. F. Eusse, C. Williams and R. Leupers, “CoEx: A novel profiling-
based algorithm/architecture co-exploration for ASIP design,” ACM

Transactions on Reconfigurable Technology and Systems (TRETS),

vol. 8, issue 3, pp. 1-16, 2015. https://doi.org/10.1145/2629563.
[8] K. Balasubadra, A. P. Shanthi and V. P. Srinivasan, “Hybrid design

space exploration methodology for application specific system

design,” International Journal of New Computer Architectures and
Their Applications, vol. 7, issue 3, pp. 102-112, 2017.

https://doi.org/10.17781/P002363.

[9] J. Zhang, H. Tabkhi and G. Schirner, “DS-DSE: Domain-specific
design space exploration for streaming applications,” Proceedings of

the Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, Germany, 19-23 March, 2018, pp. 165-170.
https://doi.org/10.23919/DATE.2018.8341997.

[10] Three-address code, [Online]. Available at:

https://en.wikipedia.org/wiki/Three-address_code.

[11] Livermore Loops Benchmark, [Online]. Available at:

http://www.netlib.org/benchmark/livermorec.

[12] joshuakehn. Sorting Algorithms, [Online]. Available at:
http://www.joshuakehn.com/2010/10/1/Sorting-Algorithms.html.

[13] Kernel (Image Processing), [Online]. Available at:

https://en.wikipedia.org/ wiki/Kernel_(image_processing).
[14] BDTI DSP Kernel Benchmarks, [Online]. Available at:

https://www.bdti.com/ Services/Benchmarks/DKB.

[15] H. Park, Y. Park and S. Mahlke, “Reducing control power in cgras
with token flow,” Proceedings of the Workshop on Optimizations for

DSP and Embedded Systems, Seattle, USA, 22-25 Mar., 2009.

[16] A. Lambrechts, P. Raghavan, M. Jayapala, B. Mei, F. Catthoor and
D. Verkest, “Interconnect exploration for energy versus performance

tradeoffs for coarse grained reconfigurable architectures,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol.
17, issue 1, pp. 151-155, 2008.

https://doi.org/10.1109/TVLSI.2008.2002993.

[17] S. Das, K. J. Martin, D. Rossi, P. Coussy and L. Benini, “An energy-
efficient integrated programmable array accelerator and compilation

flow for near-sensor ultralow power processing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol.

38, issue 6, pp. 1095-1108, 2018.

https://doi.org/10.1109/TCAD.2018.2834397.
[18] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe and R.

R. Taylor, “PipeRench: A reconfigurable architecture and compiler,”

Computer, vol. 33, issue 4, pp. 70-77, 2000.
https://doi.org/10.1109/2.839324.

[19] B. Shehan, R. Jahr, S. Uhrig and T. Ungerer, “Reconfigurable grid

alu processor: Optimization and design space exploration,”
Proceedings of the 13th Euromicro Conference on Digital System

Design: Architectures, Methods and Tools, Lille, France, 1-3 Sep.,

2010, pp. 71-79. https://doi.org/10.1109/DSD.2010.28.

[20] Y. Wang, L. Liu, S. Yin, M. Zhu, P. Cao, J. Yang and S. Wei, “On-

chip memory hierarchy in one coarse-grained reconfigurable

architecture to compress memory space and to reduce
reconfiguration time and data-reference time,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 22, issue 5, pp.

983-994, 2013. https://doi.org/10.1109/TVLSI.2013.2263155.

https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1145/3162018
https://doi.org/10.1109/IDAACS.2017.8095239
https://doi.org/10.1109/IDAACS.2019.8924360
https://doi.org/10.1145/2103380.2103445
https://doi.org/10.21553/rev-jec.147
https://doi.org/10.21553/rev-jec.147
https://doi.org/10.1145/2629563
https://doi.org/10.17781/P002363
https://doi.org/10.23919/DATE.2018.8341997
https://doi.org/10.1109/TVLSI.2008.2002993
https://doi.org/10.1109/TCAD.2018.2834397
https://doi.org/10.1109/2.839324
https://doi.org/10.1109/DSD.2010.28
https://doi.org/10.1109/TVLSI.2013.2263155

M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527

VOLUME 20(4), 2021 527

[21] M. A. Tajammul, M. A. Shami, A. Hemani and S. Moorthi, “NoC

based distributed partitionable memory system for a coarse grain

reconfigurable architecture,” Proceedings of the 24th Internatioal
Conference on VLSI Design, Chennai, India, 2-7 Jan., 2011, pp. 232-

237. https://doi.org/10.1109/VLSID.2011.45.

[22] T. Kojima and H. Amano, “A Fine-grained multicasting of
configuration data for coarse-grained reconfigurable architectures,”

IEICE Transactions on Information and Systems, vol. 102, issue 7,

pp. 1247-1256, 2019. https://doi.org/10.1587/transinf.2018EDP7336.
[23] M. K. Chung, Y. G. Cho and S. Ryu, “Efficient code compression for

coarse grained reconfigurable architectures,” Proceedings of the

IEEE 30th International Conference on Computer Design (ICCD),
Montreal, Canada, 30 Sep.-3 Oct., 2012, pp. 488-489.

https://doi.org/10.1109/ICCD.2012.6378687.

[24] B. Liu, W. Y. Zhu, Y. Liu and P. Cao, “A configuration compression
approach for coarse-grain reconfigurable architecture for radar signal

processing,” Proceedings of the International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery,
Shanghai, China, 13-15 Oct., 2014, pp. 448-453.

https://doi.org/10.1109/CyberC.2014.83.

[25] B. Egger, H. Lee, D. Kang, M.S. Moghaddam, Y. Cho, Y. Lee, S.
Kim, S. Ha and K. Choi, “A space-and energy-efficient code

compression/ decompression technique for coarse-grained

reconfigurable architectures,” Proceedings of the IEEE/ACM
International Symposium on Code Generation and Optimization

(CGO), Texas, USA, 4-8 Feb., 2017, pp. 197-209.

https://doi.org/10.1109/CGO.2017.7863740.
[26] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi

and J. Anderson, “CGRA-ME: A unified framework for CGRA

modelling and exploration,” Proceedings of the 28th International
Conference on Application-specific Systems, Architectures and

Processors (ASAP), Washington, USA, 10-12 July, 2017, pp. 184-

189. https://doi.org/10.1109/ASAP.2017.7995277.

[27] M. H. Sargolzaei and S. Mohammadi, “Energy efficient

configuration unification and compression for CGRAs,”

Microprocessors and Microsystems, vol. 62, pp. 1-11, 2018.

https://doi.org/10.1016/j.micpro.2018.06.010.

[28] M. K. Chung, J. K. Kim, Y. G. Cho and S. Ryu, “Adaptive
compression for instruction code of coarse grained reconfigurable

architectures,” Proceedings of the International Conference on

Field-Programmable Technology (FPT), Kyoto, Japan, 9-11 Dec.,
2013, pp. 394-397. https://doi.org/10.1109/FPT.2013.6718396.

[29] Y. Kim and R. N. Mahapatra, “Dynamic context compression for

low-power coarse-grained reconfigurable architecture,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.

18, issue 1, pp. 15-28, 2009.

https://doi.org/10.1109/TVLSI.2008.2006846.
[30] Y. Kim, “Power-efficient configuration cache structure for coarse-

grained reconfigurable architecture,” Journal of Circuits, Systems

and Computers, vol. 22, issue 3, 1350001, 2013.
https://doi.org/10.1142/S0218126613500011.

Mohammad Hossein Sargolzaei received

his B.Sc., M.Sc. and Ph.D. degree in

computer engineering from Shahid

Bahonar University and University of

Tehran in 2006, 2009 and 2018,

respectively. He is an Assistant Professor

in School of Electrical and Computer

Engineering, at the University of Sistan

and Baluchestan. His research interests

include embedded system design, high-

performance and low power VLSI design

and fault-tolerant system design.

https://doi.org/10.1109/VLSID.2011.45
https://doi.org/10.1587/transinf.2018EDP7336
https://doi.org/10.1109/ICCD.2012.6378687
https://doi.org/10.1109/CyberC.2014.83
https://doi.org/10.1109/CGO.2017.7863740
https://doi.org/10.1109/ASAP.2017.7995277
https://doi.org/10.1016/j.micpro.2018.06.010
https://doi.org/10.1109/FPT.2013.6718396
https://doi.org/10.1109/TVLSI.2008.2006846
https://doi.org/10.1142/S0218126613500011

